A118410 G.f. A(x) = Sum_{n>=0} a(n)*x^n/2^(n*(n-1)/2) satisfies: A(x) = Sum_{n>=0} A(x)^n*x^n/2^(n*(n-1)/2).
1, 1, 3, 21, 321, 10385, 699073, 96908737, 27478721537, 15863659383041, 18583701166494721, 44066148876930001921, 211105432749968736673793, 2040201553888722742048509953, 39729701298130761785818052935681
Offset: 0
Keywords
Examples
A(x) = 1 + x + 3*x^2/2 + 21*x^3/8 + 321*x^4/64 + 10385*x^5/1024 +... A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/8 +...
Crossrefs
Cf. A117401.
Programs
-
PARI
{a(n)=2^(n*(n-1)/2)*polcoeff(1/x*serreverse(x/sum(k=0,n,x^k/2^(k*(k-1)/2)+x*O(x^n))),n)}
Formula
G.f.: A(x) = (1/x)*series_reversion[x/Sum_{n>=0} x^n/2^(n*(n-1)/2)].