cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118438 Triangle T, read by rows, equal to the matrix product T = H*C*H, where H is the self-inverse triangle A118433 and C is Pascal's triangle.

Original entry on oeis.org

1, -1, 1, 5, -2, 1, 11, -9, -3, 1, -23, 44, 30, -4, 1, -41, 125, 110, -30, -5, 1, 45, -246, -345, 220, 75, -6, 1, -29, -301, -861, 875, 385, -63, -7, 1, 337, -232, 1260, -2296, -1610, 616, 140, -8, 1, 1199, -3015, -1044, -3612, -5166, 3150, 924, -108, -9, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Comments

The matrix inverse of H*C*H is H*[C^-1]*H = A118435, where H^2 = I (identity). The matrix log, log(T) = -A118441, is a matrix square root of a triangular matrix with a single diagonal (two rows down from the main diagonal).

Examples

			Triangle begins:
1;
-1, 1;
5,-2, 1;
11,-9,-3, 1;
-23, 44, 30,-4, 1;
-41, 125, 110,-30,-5, 1;
45,-246,-345, 220, 75,-6, 1;
-29,-301,-861, 875, 385,-63,-7, 1;
337,-232, 1260,-2296,-1610, 616, 140,-8, 1;
1199,-3015,-1044,-3612,-5166, 3150, 924,-108,-9, 1; ...
		

Crossrefs

Cf. A118439 (column 0), A118440 (row sums), A118435 (matrix inverse), A118441 (-matrix log); A118433 (self-inverse H).

Programs

  • Mathematica
    nmax = 12;
    h[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2] - Quotient[k, 2]+n-k);
    H = Table[h[n, k], {n, 0, nmax}, {k, 0, nmax}];
    Cn = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, nmax}];
    Tn = H.Cn.H;
    T[n_, k_] := Tn[[n+1, k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2024 *)
  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1)*(-1)^(r\2- (c-1)\2+r-c))),C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))));(M*C*M)[n+1,k+1]}

Formula

Since T + T^-1 = C + C^-1, then [T^-1](n,k) = (1+(-1)^(n-k))*C(n,k) - T(n,k) is a formula for the matrix inverse T^-1 = A118435.

A118439 Column 0 of triangle A118438.

Original entry on oeis.org

1, -1, 5, 11, -23, -41, 45, -29, 337, 1199, -3115, -6469, 10297, 8839, 16125, 108691, -354143, -873121, 1721765, 2521451, -1476983, 6699319, -34182195, -103232189, 242017777, 451910159, -597551755, -130656229, -2465133863, -10513816601, 29729597085, 66349305331, -116749235903
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Crossrefs

Cf. A118438 (triangle), A118440 (row sums); A118436 (column 0 of inverse).

Programs

  • Mathematica
    LinearRecurrence[{0, -5, 0, -19, 0, 25}, {1, -1, 5, 11, -23, -41}, 33] (* Jean-François Alcover, Apr 08 2024 *)
  • PARI
    {a(n)=polcoeff((1-x+10*x^2+6*x^3+21*x^4-5*x^5)/(1-x^2)/(1+6*x^2+25*x^4+x*O(x^n)),n)}

Formula

G.f.: (1-x+10*x^2+6*x^3+21*x^4-5*x^5)/(1-x^2)/(1+6*x^2+25*x^4).
Showing 1-2 of 2 results.