cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118464 Primes p=prime(i) of level (1,5), i.e., such that A118534(i) = prime(i-5).

Original entry on oeis.org

13933, 23633, 28229, 49223, 71363, 79633, 81239, 90547, 96857, 97613, 108827, 115363, 117443, 126781, 130657, 133733, 153533, 157679, 176819, 186799, 197389, 206651, 221327, 222199, 228139, 246947, 266297, 272203, 276049, 279221, 282493, 290627, 292493, 296299
Offset: 1

Views

Author

Rémi Eismann, May 04 2006

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,5): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(5061) = 49223 has level (1,5): prime(5062) = 49253 = 2*prime(5061) - prime(5061-5) = 2*prime(5061) - prime(5056).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 5}, Prime@ Select[Range[m + 1, 3*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    lista(nn) = my(c=6, v=primes(6)); forprime(p=17, nn, if(2*v[c]-p==v[c=c%6+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

Extensions

Edited by N. J. A. Sloane, May 14 2006
More terms from Rémi Eismann, May 21 2006
Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009