cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118505 Sophie Germain primes for which the product of the digits is also a Sophie Germain prime.

Original entry on oeis.org

2, 3, 5, 113, 131, 1511, 111111113, 1111111121, 1111111111111111111111111111111121, 111111111111111111111111111111111111131, 111111111113111111111111111111111111111, 111111131111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 06 2006

Keywords

Comments

None of the numbers in the sequence can have digits 0,4,6,7,8 or 9. Either the digits are all 1's, or there is one digit 2,3 or 5 and all the others are 1's.
If we express these numbers more compactly as (10^x-1)/9 + y*10^z, with y restricted to one of {1,2,4}, then the first 26 values (x < 2010) of {x,y,z} are: {1, 1, 0}, {1, 2, 0}, {1, 4, 0}, {3, 2, 0}, {3, 2, 1}, {4, 4, 2}, {9, 2, 0}, {10, 1, 1}, {34, 1, 1}, {39, 2, 1}, {39, 2, 27}, {57, 2, 49}, {82, 1, 39}, {114, 2, 84}, {129, 2, 69}, {142, 1, 132}, {148, 4, 119}, {148, 4, 132}, {160, 4, 53}, {160, 1, 105}, {244, 1, 16}, {280, 1, 210}, {976, 1, 285}, {1111, 1, 1000}, {1170, 2, 1094}, {1807, 1, 1308}. - Hans Havermann, May 13 2006
The next term has 82 digits. - Harvey P. Dale, Jul 30 2019

Examples

			131 is in the sequence because (1) it is a Sophie Germain prime and (2) the product of its digits 1*3*1=3 is also a Sophie Germain prime.
		

Crossrefs

Cf. A005384.

Programs

  • Mathematica
    Select[FromDigits/@(Flatten[Permutations/@Flatten[Table[PadRight[{n},k,1],{n,{1,2,3,5}},{k,60}],1],1]),AllTrue[ {#,2#+1,Times@@ IntegerDigits[ #],2Times@@ IntegerDigits[ #]+ 1},PrimeQ]&]//Sort (* Harvey P. Dale, Jul 30 2019 *)

Extensions

More terms from Hans Havermann, May 07 2006