A118558 a(n) = (2^n-1)^4 - 2.
-2, -1, 79, 2399, 50623, 923519, 15752959, 260144639, 4228250623, 68184176639, 1095222947839, 17557851463679, 281200199450623, 4501401006735359, 72040003462430719, 1152780773560811519, 18445618199572250623, 295138898083176775679, 4722294425687923097599
Offset: 0
Examples
a(0) = (2^0 - 1)^4 - 2 = 0^4 - 2 = -2. a(1) = (2^1 - 1)^4 - 2 = 1^4 - 2 = -1. a(2) = (2^2 - 1)^4 - 2 = 3^4 - 2 = 79.
Links
- Index entries for linear recurrences with constant coefficients, signature (31,-310,1240,-1984,1024).
Programs
-
Mathematica
(2^Range[0, 20] - 1)^4 - 2 (* Paolo Xausa, Apr 19 2024 *)
-
PARI
a(n)=(2^n-1)^4-2 \\ Charles R Greathouse IV, Feb 19 2016
Formula
a(n) = (2^n - 1)^4 - 2.
G.f.: (1984*x^4-2120*x^3+510*x^2-61*x+2) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)). - Colin Barker, Apr 30 2013
Extensions
Offset changed to 0 by Paolo Xausa, Apr 19 2024