A118575 Dividuus numbers: numbers which are divisible by (1) the sum of their digits,(2) the product of their digits,(3) the digital root and (4) the multiplicative digital root.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 111, 112, 132, 135, 144, 216, 312, 315, 432, 612, 624, 1116, 1212, 1344, 1416, 2112, 2232, 3168, 3312, 4112, 4224, 6624, 8112, 11112, 11115, 11133, 11172, 11232, 11313, 11331, 11424, 11664, 12132, 12216, 12312, 12432
Offset: 1
Examples
624 is in the sequence because (1) the sum of its digits is 6+4+2=12, (2) the product of its digits is 6*4*2=48, (3) the digital root is 3, (4) the multiplicative digital root is 6 and 624 is divisible by 12,48,3 and 6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2639
Crossrefs
Programs
-
Maple
filter:= proc(n) local L, s,p; L:= convert(n,base,10); s:= convert(L,`+`); if n mod s <> 0 then return false fi; p:= convert(L,`*`); if p = 0 or n mod p <> 0 then return false fi; while s > 10 do s:= convert(convert(s,base,10),`+`); od: if n mod s <> 0 then return false fi; while p > 10 do p:= convert(convert(p, base, 10),`*`); od: p > 0 and n mod p = 0; end proc: select(filter, [$1..10^4]); # Robert Israel, Aug 24 2014
-
Python
from operator import mul from functools import reduce from gmpy2 import t_mod, mpz def A031347(n): while n > 9: n = reduce(mul, (int(d) for d in str(n))) return n A118575 = [n for n in range(1, 10**9) if A031347(n) and not (str(n).count('0') or t_mod(n, (1+t_mod((n-1), 9))) or t_mod(n, A031347(n)) or t_mod(n,sum((mpz(d) for d in str(n)))) or t_mod(n, reduce(mul,(mpz(d) for d in str(n)))))] # Chai Wah Wu, Aug 26 2014
Extensions
Inserted a(17)=216 by Chai Wah Wu, Aug 24 2014
Comments