A118582 Decimal expansion of Sum_{k>=3} 1/(k log k (log log k)^2).
3, 8, 4, 0, 6, 7, 6, 8, 0, 9, 2, 8, 2, 1, 7
Offset: 2
Examples
38.4067...
References
- Daniel Zwillinger, Editor, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall/CRC, Boca Raton, 1.3.9 Miscellaneous Sums and Series, example 15, page 42, 2003.
Links
- R. J. Mathar, The series limit of sum_k 1/[k log k (log log k)^2], arXiv:0902.0789 [math.NA], 2009-2021.
- Eric Weisstein's World of Mathematics, Convergent Series
Crossrefs
Cf. A115563.
Programs
-
Mathematica
(* Computation needs a few minutes *) digits = 15; m0 = 10^6; dm = 10^5; Clear[f]; f[m_] := f[m] = Sum[ 1/(k*Log[k]*Log[Log[k]]^2) // N[#, digits+2]&, {k, 3, m}] + 1/Log[Log[m + 1/2]] // RealDigits[#, 10, digits+2]& // First; f[m0]; f[m = m0 + dm]; While[f[m] != f[m - dm], m = m + dm]; f[m][[1 ;; digits]] (* Jean-François Alcover, Mar 07 2013 *)
Extensions
Corrected the least significant digit and added 11 more digits. R. J. Mathar, Feb 03 2009
Name spelling and 3 least significant digits corrected by R. J. Mathar, Jul 07 2009
Comments