cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118590 Larger of two consecutive primes whose positive difference is a square.

Original entry on oeis.org

3, 11, 17, 23, 41, 47, 71, 83, 101, 107, 113, 131, 167, 197, 227, 233, 281, 311, 317, 353, 383, 401, 443, 461, 467, 491, 503, 617, 647, 677, 743, 761, 773, 827, 857, 863, 881, 887, 911, 941, 971, 1013, 1091, 1097, 1217, 1283, 1301, 1307, 1427, 1433, 1451, 1487
Offset: 1

Views

Author

Cino Hilliard, May 07 2006

Keywords

Examples

			7 and 11 are consecutive primes. 11-7 = 4 a square, so 11 is the second term in the table.
		

Crossrefs

Cf. A031935, A031505, A134117 (gap 6^2), A204670 (gap 8^2), A050434 (gap 10^2), A138198, A161002.

Programs

  • Mathematica
    Select[Table[Prime[n], {n, 2, 237}], IntegerQ[Sqrt[# - Prime[PrimePi[# - 1]]]] &] (* Jayanta Basu, Apr 23 2013 *)
    nn = 500; ps = Prime[Range[nn]]; t = {}; Do[If[IntegerQ[Sqrt[ps[[n]] - ps[[n-1]]]], AppendTo[t, ps[[n]]]], {n, 2, nn}]; t (* T. D. Noe, Apr 23 2013 *)
    Prime[#+1]&/@Flatten[Position[Differences[Prime[Range[250]]],?(IntegerQ[ Sqrt[#]]&)]] (* _Harvey P. Dale, May 08 2019 *)
  • PARI
    g(n) = for(x=2, n, if(issquare(prime(x)-prime(x-1)), print1(prime(x)",")))

Formula

Superset of A031935 and A031505. [From R. J. Mathar, Aug 08 2008]