cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118646 a(n) is the number of binary strings of length n such that there exists a subsequence of length 4 containing 3 or more ones.

Original entry on oeis.org

0, 0, 1, 5, 13, 31, 71, 159, 346, 739, 1559, 3258, 6756, 13922, 28547, 58300, 118668, 240880, 487835, 986085, 1990025, 4010658, 8073786, 16237521, 32629241, 65522823, 131498801, 263774439, 528880599, 1060044148, 2124001923
Offset: 1

Views

Author

Tanya Khovanova, May 10 2006, Aug 17 2006

Keywords

Comments

Or there are 3 ones in a row - this is relevant only for a(3).
Complementary to A118647, namely a(n) = 2^(n+3) - A118647(n).

Examples

			a(4) is 5 because only the following binary strings of length 4 satisfy the conditions: 0111, 1011, 1101, 1011, 1111.
		

Crossrefs

Cf. A118647.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients( R!( x^3*(1+2*x-x^2-x^3)/((1-2*x)*(1-x-x^2-x^4+x^6)) )); // G. C. Greubel, May 05 2023
    
  • Mathematica
    LinearRecurrence[{3,-1,-2,1,-2,-1,2}, {0,0,1,5,13,31,71}, 41] (* G. C. Greubel, May 05 2023 *)
  • SageMath
    def A118646_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3*(1+2*x-x^2-x^3)/((1-2*x)*(1-x-x^2-x^4+x^6)) ).list()
    a=A118646_list(41); a[1:] # G. C. Greubel, May 05 2023

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) + 13*2^(n-6).
a(n) = +3*a(n-1) -a(n-2) -2*a(n-3) +a(n-4) -2*a(n-5) -a(n-6) +2*a(n-7).
G.f.: x^3*(1+2*x-x^2-x^3)/( (1-2*x)*(1-x-x^2-x^4+x^6) ). - R. J. Mathar, Nov 28 2011