cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118650 Center column a(2n,n) of A106597.

Original entry on oeis.org

1, 3, 14, 72, 388, 2150, 12134, 69370, 400398, 2328162, 13616892, 80022612, 472133638, 2794893246, 16592160944, 98743919468, 588913687966, 3518968100982, 21062444053040, 126256612255260, 757853797478188
Offset: 0

Views

Author

Joshua Zucker, May 10 2006

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and (s,s) for s>=1. [Joerg Arndt, Jul 01 2011]

Crossrefs

Cf. A106597.

Programs

  • Mathematica
    Table[Sum[Binomial[2k,k](-1)^(n-k)Sum[Binomial[k,j]Binomial[k+1,n-k-j]2^(k-j),{j,0,k}],{k,0,n}],{n,0,40}] (* Emanuele Munarini, Feb 06 2017 *)
  • Maxima
    makelist(sum(binomial(2*k,k)*(-1)^(n-k)*sum(binomial(k,j)*binomial(k+1,n-k-j)*2^(k-j),j,0,k),k,0,n),n,0,12); /* Emanuele Munarini, Feb 06 2017 */

Formula

G.f.: (1-x)/sqrt(1-8*x+12*x^2-4*x^3). - Mark van Hoeij, Apr 16 2013
Conjecture: n*a(n) +3*(-3*n+2)*a(n-1) +4*(5*n-8)*a(n-2) +2*(-8*n+21)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 10 2013
From Emanuele Munarini, Feb 06 2017: (Start)
a(n) = Sum_{k=0..n} binomial(2*k,k)*(-1)^(n-k) * Sum_{j=0..k} binomial(k,j)*binomial(k+1,n-k-j)*2^(k-j).
Proof of Mathar's recurrence.
Let A(t) be the g.f. of the coefficients a(n). Then we have the identity (1 - 9*t + 20*t^2 - 16*t^3 + 4*t^4)*A'(t) = (3 - 8*t + 6*t^2 - 2*t^3)*A(t).
Let R be the incremental ratio, i.e. the operator defined by RA(t) = (A(t)-A(0))/t, giving the g.f. of the shifted sequence a(n+1), then we have
R^3A'(t) - 9*R^2A'(t) + 20*RA'(t) - 16*A'(t) + 4*t*A'(t) = 3*R^3A(t) - 8*R^2A(t) + 6*RA(t) - 2*A(t), from which we obtain the recurrence:
(n+4)*a(n+4)-3*(3*n+10)*a(n+3)+4*(5*n+12)*a(n+2)-2*(8*n+11)*a(n+1)+2*(2*n+1)*a(n)=0.
This proves the above conjecture.
(End)