cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118654 Square array T(n,k) read by antidiagonals: T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 3, 2, 1, 15, 8, 7, 5, 3, 1, 31, 16, 15, 11, 8, 5, 1, 63, 32, 31, 23, 18, 13, 8, 1, 127, 64, 63, 47, 38, 29, 21, 13, 1, 255, 128, 127, 95, 78, 61, 47, 34, 21, 1, 511, 256, 255, 191, 158, 125, 99, 76, 55, 34
Offset: 0

Views

Author

Ross La Haye, May 17 2006

Keywords

Comments

Inverse binomial transform (by columns) of A090888.

Examples

			T(2,3) = 7 because 2^2(Fibonacci(3)) - Fibonacci(3-2) = 4*2 - 1 = 7.
{1};
{1,  0};
{1,  1,  1};
{1,  3,  2,  1};
{1,  7,  4,  3,  2};
{1, 15,  8,  7,  5,  3};
{1, 31, 16, 15, 11,  8,  5};
{1, 63, 32, 31, 23, 18, 13,  8};
		

Crossrefs

Rows: T(0,k) = A000045(k-1), for k > 0; T(1,k) = A000045(k+1); T(2,k) = A000032(k+1); T(3,k) = A022097(k); T(4,k) = A022105(k); T(5,k) = A022401(k).
Columns: T(n,1) = A000225(n); T(n,2) = A000079(n); T(n,3) = A000225(n+1); T(n,4) = A055010(n+1); T(n,5) = A051633(n); a(T,6) = A036563(n+3).

Formula

T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).
T(n,k) = (2^n-2)*Fibonacci(k) + Fibonacci(k+1).
T(n,0) = 1; T(n,1) = 2^n - 1; T(n,k) = T(n,k-1) + T(n,k-2), for k > 1.
T(0,k) = Fibonacci(k-1); T(1,k) = Fibonacci(k+1); T(n,k) = 3T(n-1,k) - 2T(n-2,k), for n > 1.
T(n,k) = 2T(n-1,k) + Fibonacci(k-2), for n > 0.
T(n,k) = A109754(2^n-2, k+1) = A101220(2^n-2, 0, k+1), for n > 0.
O.g.f. (by rows) = (1+(-2+2^n)x)/(1-x-x^2).
Sum_{k=0..n} T(n-k,k) = A119587(n+1). - Ross La Haye, May 31 2006