cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A261560 Semiprimes sp such that (sum of digits of (sp)) + (product of digits of (sp)) is also semiprime.

Original entry on oeis.org

14, 33, 38, 39, 46, 49, 55, 69, 74, 82, 86, 93, 94, 111, 121, 122, 141, 142, 146, 161, 166, 202, 214, 221, 226, 247, 249, 254, 259, 262, 274, 278, 287, 295, 301, 303, 323, 334, 346, 386, 411, 427, 445, 454, 458, 469, 485, 489, 501, 505, 529, 542, 565, 586, 589
Offset: 1

Views

Author

K. D. Bajpai, Aug 24 2015

Keywords

Examples

			a(1) = 14 = (2 * 7), is semiprime. (1+4) + (1*4) = 9 = (3 * 3) is also semiprime.
a(3) = 38 = (2 * 19), is semiprime. (3+8) + (3*8) = 35 = (7 * 5) is also semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [11..300] | IsSemiprime(n) and IsSemiprime(k) where k is (&+Intseq(n) + &*Intseq(n))];
  • Maple
    with(numtheory): select(n -> bigomega(n)=2 and bigomega( add(d, d=convert(n, base, 10)) + mul(d, d=convert(n, base, 10)) ) = 2, [seq(n, n=1..300)]);
  • Mathematica
    Select[Range[2000], PrimeOmega[#] == 2 && PrimeOmega[(Plus @@ IntegerDigits[#]) + (Times @@ IntegerDigits[#])] == 2 &]
  • PARI
    for(n = 1, 300, d = digits(n); pd = prod(i = 1, #d, d[i]); if(bigomega(n)==2 && bigomega(sumdigits(n) + pd)==2, print1(n,", ")));
    
Showing 1-1 of 1 results.