A118712 a(n) = Determinant of n X n circulant matrix whose first row is A000001(1), A000001(2), ..., A000001(n) where A000001(n) = number of groups of order n.
1, 0, 0, -5, 6, -16, 9, -134400, 647248, -1711908, 6076067, -85248000, 116477425, -1764364437, 909276004, -522319050599375232, 14313181351994538493, -165893335414907083200, 2939566160282258664451, -5007637771411479278976, 75399747694572065660672
Offset: 1
Keywords
Examples
a(4) = -5 because of the determinant -5 = |1,1,1,2| |2,1,1,1| |1,2,1,1| |1,1,2,1|. a(11) = 6076067 = determinant |1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1| |1, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2| |2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 2| |2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5| |5, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1| |1, 5, 2, 2, 1, 1, 1, 1, 2, 1, 2| |2, 1, 5, 2, 2, 1, 1, 1, 1, 2, 1| |1, 2, 1, 5, 2, 2, 1, 1, 1, 1, 2| |2, 1, 2, 1, 5, 2, 2, 1, 1, 1, 1| |1, 2, 1, 2, 1, 5, 2, 2, 1, 1, 1| |1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 1|.
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Programs
-
GAP
A118712 := n -> DeterminantMat(List([0..n-1], i->List([0..n-1], j->NrSmallGroups(((j-i) mod n)+1)))); # Eric M. Schmidt, Nov 17 2013
Extensions
a(1) corrected by and more terms from Eric M. Schmidt, Nov 17 2013