A118713 a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.
4, -20, 361, -3567, 218053, -3455872, 736439027, -16245418225, 1519211613654, -37662452460912, 20199655476042865, -643524421698841536, 46513669467992431114, -3754367220494585505280, 277686193779526116536293, -123973821931125256333959105, 20103033234038999233385180658
Offset: 1
Examples
a(2) = -20 = determinant |4,6| |6,4|. a(3) = 361 = 19^2 = determinant |4,6,9| |9,4,6| |6,9,4|.
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Programs
-
Maple
A118713 := proc(n) local C,r,c ; C := Matrix(1..n,1..n) ; for r from 1 to n do for c from 1 to n do C[r,c] := A001358(1+((c-r) mod n)) ; end do: end do: LinearAlgebra[Determinant](C) ; end proc: seq(A118713(n),n=1..13) ;
-
Mathematica
nmax = 13; sp = Select[Range[3 nmax], PrimeOmega[#] == 2&]; a[n_] := Module[{M}, M[1] = sp[[1 ;; n]]; M[k_] := M[k] = RotateRight[M[k - 1]]; Det[Table[M[k], {k, 1, n}]]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 16 2023 *)
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007
Comments