cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118807 Number of partitions of n having no parts with multiplicity 3.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 12, 19, 24, 34, 43, 62, 77, 105, 132, 177, 220, 287, 356, 462, 570, 723, 888, 1121, 1370, 1705, 2074, 2570, 3111, 3816, 4601, 5617, 6743, 8170, 9777, 11794, 14058, 16858, 20029, 23932, 28334, 33692, 39772, 47133, 55468, 65471, 76840
Offset: 0

Views

Author

Emeric Deutsch, Apr 29 2006

Keywords

Comments

Column 0 of A118806.
Infinite convolution product of [1,1,1,0,1,1,1,1,1,1] aerated n-1 times. I.e., [1,1,1,0,1,1,1,1,1,1] * [1,0,1,0,1,0,0,0,1,0] * [1,0,0,1,0,0,1,0,0,0] * ... - Mats Granvik, Gary W. Adamson, Aug 07 2009

Examples

			a(6) = 9 because among the 11 (=A000041(6)) partitions of 6 only [2,2,2] and [3,1,1,1] have parts with multiplicity 3.
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j+x^(2*j)+x^(4*j)/(1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k) + x^(4*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: Product_{j>=1} (1 + x^j + x^(2j) + x^(4j)/(1-x^j)).
a(n) = A000041(n) - A183560(n) = A183568(n,0) - A183568(n,3). - Alois P. Heinz, Oct 09 2011
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-3*x) + exp(-5*x)) dx = 0.73597677748514060768682570953508781551028221145343244320009... - Vaclav Kotesovec, Jun 12 2025