cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118871 Number of binary sequences of length n containing exactly one subsequence 0101.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 10, 24, 57, 128, 278, 596, 1260, 2628, 5430, 11136, 22683, 45936, 92574, 185764, 371347, 739840, 1469580, 2911224, 5753048, 11343800, 22322444, 43845120, 85973013, 168314604, 329041842, 642385248, 1252552077, 2439430272, 4745767138, 9223159852
Offset: 0

Views

Author

Emeric Deutsch, May 03 2006

Keywords

Comments

With only two 0's at the beginning, the convolution of A112575 with itself. Column 1 of A118869.

Examples

			a(5) = 4 because we have 01010, 01011, 00101 and 10101.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4/(1 -2*x +x^2 -2*x^3 +x^4)^2 )); // G. C. Greubel, Jan 14 2022
    
  • Maple
    g:=z^4/(1-2*z+z^2-2*z^3+z^4)^2: gser:=series(g,z=0,40): seq(coeff(gser, z, n), n=0..35);
  • Mathematica
    LinearRecurrence[{4,-6,8,-11,8,-6,4,-1}, {0,0,0,0,1,4,10,24}, 40] (* G. C. Greubel, Jan 14 2022 *)
  • Sage
    @CachedFunction
    def A112575(n): return sum((-1)^k*binomial(n-k, k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2)))
    def A118871(n): return sum( A112575(j+1)*A112575(n-j-3) for j in (0..n-4) )
    [A118871(n) for n in (0..40)] # G. C. Greubel, Jan 14 2022

Formula

G.f.: x^4/(1-2*x+x^2-2*x^3+x^4)^2.
a(n) = Sum_{j=0..n-4} A112575(j+1)*A112575(n-j-3). - G. C. Greubel, Jan 14 2022