A118871 Number of binary sequences of length n containing exactly one subsequence 0101.
0, 0, 0, 0, 1, 4, 10, 24, 57, 128, 278, 596, 1260, 2628, 5430, 11136, 22683, 45936, 92574, 185764, 371347, 739840, 1469580, 2911224, 5753048, 11343800, 22322444, 43845120, 85973013, 168314604, 329041842, 642385248, 1252552077, 2439430272, 4745767138, 9223159852
Offset: 0
Keywords
Examples
a(5) = 4 because we have 01010, 01011, 00101 and 10101.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,8,-11,8,-6,4,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4/(1 -2*x +x^2 -2*x^3 +x^4)^2 )); // G. C. Greubel, Jan 14 2022 -
Maple
g:=z^4/(1-2*z+z^2-2*z^3+z^4)^2: gser:=series(g,z=0,40): seq(coeff(gser, z, n), n=0..35);
-
Mathematica
LinearRecurrence[{4,-6,8,-11,8,-6,4,-1}, {0,0,0,0,1,4,10,24}, 40] (* G. C. Greubel, Jan 14 2022 *)
-
Sage
@CachedFunction def A112575(n): return sum((-1)^k*binomial(n-k, k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2))) def A118871(n): return sum( A112575(j+1)*A112575(n-j-3) for j in (0..n-4) ) [A118871(n) for n in (0..40)] # G. C. Greubel, Jan 14 2022
Formula
G.f.: x^4/(1-2*x+x^2-2*x^3+x^4)^2.
Comments