cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118874 A halting sequence: let f_n be the n-th recursive function, relative to the Godel numbering given in Cutland, then a(n) is f_n(n)+1 if the corresponding program halts on input n, 0 otherwise.

Original entry on oeis.org

1, 3, 1, 4, 2, 1, 1, 0, 1, 12, 2, 1, 1, 1, 1, 16, 0, 19, 1, 21, 3, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 32, 1, 0, 0, 36, 2, 1, 1, 0, 2, 45, 3, 2, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 64, 1, 67, 1, 0, 0, 0, 0, 0, 1, 76, 2, 1, 1, 1, 1, 81, 0, 84, 2, 86, 4, 3, 3, 0, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 0
Offset: 0

Views

Author

Sam Alexander, May 24 2006

Keywords

Comments

The prototypical example of a noncomputable sequence.

Examples

			Using Cutland's Godel numbering, 80 corresponds to the URM program "Z(1) J(1,1,1) S(1)", which clearly loops forever on any input, so a(80)=0. On the other hand, 17 corresponds to the URM program "S(1) T(1,1)", which, on input 17, produces 18. So a(17)=18+1=19.
		

References

  • Nigel Cutland, "Computability: An introduction to recursive function theory". Cambridge University Press, 1980. p. 78.

Crossrefs