cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118883 Smallest prime p with bigomega(p+1)=n, where bigomega(m)=A001222(m) is the number of prime divisors of m (counted with multiplicity).

Original entry on oeis.org

2, 3, 7, 23, 31, 223, 127, 383, 1151, 3583, 5119, 6143, 8191, 129023, 73727, 245759, 131071, 917503, 524287, 5505023, 10616831, 14680063, 18874367, 109051903, 169869311, 654311423, 738197503, 2264924159, 2818572287, 3758096383, 2147483647, 24159191039
Offset: 1

Views

Author

Rick L. Shepherd, May 03 2006

Keywords

Comments

Equivalently, smallest prime p such that p+1 is an n-almost prime. For smallest prime p such that p+1 is a squarefree n-almost prime, see A098026.

Examples

			a(4) = 23 because 23 is prime and 23+1 = 2*2*2*3 has 4 prime factors (24 is a 4-almost prime).
		

Crossrefs

Programs

  • Mathematica
    (* copied directly from A073919 with only a sign change *) ptns[n_, 0] := If[n==0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n v, Return[v]]; minp = Min@@ Select[l - 1, ProvablePrimeQ]; If[minp < v, v = minp]]] (* First do <Robert G. Wilson v *) Array[a, 32] (* Robert G. Wilson v, Jul 21 2011 *)
  • PARI
    almost_primes(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, listput(list, m*q)), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=almost_primes(x, y, n)); for(k=1, #v, if(isprime(v[k]-1), return(v[k]-1))); x=y+1; y=2*x); \\ Daniel Suteu, Jan 07 2025

Extensions

a(26)-a(32) from Donovan Johnson, Feb 02 2011