cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073919 Smallest prime p with bigomega(p-1)=n, where bigomega(m)=A001222(m) is the number of prime divisors of m (counted with multiplicity).

Original entry on oeis.org

2, 3, 5, 13, 17, 73, 97, 193, 257, 769, 3457, 7681, 15361, 12289, 40961, 114689, 65537, 737281, 1376257, 786433, 5308417, 7340033, 14155777, 28311553, 104857601, 113246209, 167772161, 469762049, 2113929217, 1811939329
Offset: 0

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Examples

			a(2) = 5 = 2*2 + 1. a(5) = 73 = 2*2*2*3*3 + 1.
		

Crossrefs

Cf. A118883.

Programs

  • Mathematica
    ptns[n_, 0] := If[n==0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[nv, Return[v]]; minp=Min@@Select[l+1, ProvablePrimeQ]; If[minpHarvey P. Dale, Sep 28 2014 *)
  • PARI
    almost_primes(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, listput(list, m*q)), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = if(n==0, return(2)); my(x=2^n, y=2*x); while(1, my(v=almost_primes(x, y, n)); for(k=1, #v, if(isprime(v[k]+1), return(v[k]+1))); x=y+1; y=2*x); \\ Daniel Suteu, Jan 07 2025

Extensions

Edited by Dean Hickerson, Nov 12 2002

A283652 Primes p such that bigomega(p+1) = 20.

Original entry on oeis.org

5505023, 8847359, 13271039, 17915903, 22118399, 24379391, 27131903, 29859839, 31981567, 32440319, 34406399, 36863999, 37486591, 38273023, 42205183, 46448639, 48496639, 54001663, 57016319, 60948479, 61439999, 62128127, 62705663, 67184639
Offset: 1

Views

Author

Zak Seidov, Mar 12 2017

Keywords

Crossrefs

Programs

  • Mathematica
    p = 4128767; While[p<=57016319, If[PrimeOmega[1 + p] == 20, Print[p,", "]]; p = NextPrime[p + 2]] (* Indranil Ghosh, Mar 13 2017, after the PARI program from the author *)
    Select[Prime[Range[4*10^6]],PrimeOmega[#+1]==20&] (* Harvey P. Dale, Jul 05 2020 *)
  • PARI
    {p=4128767; while(p<=57016319, if(bigomega(1+p)==20, print1(p ",")); p=nextprime(p+2))}

A321169 a(n) is the smallest prime p such that p + 2 is a product of n primes (counted with multiplicity).

Original entry on oeis.org

3, 2, 43, 79, 241, 727, 3643, 15307, 19681, 164023, 1673053, 885733, 2657203, 18600433, 23914843, 100442347, 358722673, 645700813, 4519905703, 18983603959, 48427561123, 31381059607, 261508830073, 1307544150373, 3295011258943, 24006510600883, 12709329141643, 53379182394907, 190639937124673, 2615579937350539
Offset: 1

Views

Author

Amiram Eldar and Zak Seidov, Jan 10 2019

Keywords

Comments

a(n) ~ c * 3^n. - David A. Corneth, Jan 11 2019

Examples

			a(1) = 3 as 3 + 2 = 5 (prime),
a(2) = 2 as 2 + 2 = 4 = 2*2 (semiprime),
a(3) = 43 as 43 + 2 = 45 = 3*3*5  (3-almost prime),
a(4) = 79 as 79 + 2 = 81 = 3*3*3*3 (4-almost prime).
		

Crossrefs

Programs

  • Mathematica
    ptns[n_, 0] := If[n == 0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n < k, Return[{}]]; ptns[n, k] = 1 + Union @@ Table[PadRight[#, k] & /@ ptns[n - k, r], {r, 0, k}]]; a[n_] := Module[{i, l, v}, v = Infinity; For[i = n, True, i++, l = (Times @@ Prime /@ # &) /@ ptns[i, n]; If[Min @@ l > v, Return[v]]; minp = Min @@ Select[l - 2, PrimeQ]; If[minp < v, v = minp]]] ; Array[a, 10] (* after Amarnath Murthy at A073919 *)
  • PARI
    a(n) = forprime(p=2, , if (bigomega(p+2) == n, return (p))); \\ Michel Marcus, Jan 10 2019
    
  • PARI
    a(n) = {my(p3 = 3^n, u, c); if(n <= 2, return(4 - n)); if(isprime(p3 - 2), return(p3 - 2)); forprime(p = 5, oo, if(isprime(p3 / 3 * p - 2), u = p3 / 3 * p - 2; break ) ); for(i = 2, n, if(p3 * (5/3)^i > u, return(u)); for(j = 1, oo, if(p3 * j \ 3^i > u, next(2)); if(bigomega(j) == i, if(isprime(p3 / 3^(i) * j - 2), u = p3 / 3^(i) * j - 2; next(2) ) ) ) ); return(u) } \\ David A. Corneth, Jan 11 2019
Showing 1-3 of 3 results.