cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118894 Numbers m such that the Pell equation x^2-m*y^2=1 has fundamental solution with x even.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 43, 47, 51, 59, 63, 67, 71, 75, 79, 83, 87, 91, 99, 103, 107, 115, 119, 123, 127, 131, 135, 139, 143, 151, 159, 163, 167, 171, 175, 179, 187, 191, 195, 199, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 263, 267
Offset: 1

Views

Author

T. D. Noe, May 04 2006

Keywords

Comments

Numbers m such that A002350(m) is even. These m can be used to generate consecutive odd powerful numbers, as in A076445. As shown by Lang, the solution of Pell's equation is greatly simplified by Chebyshev polynomials of the first kind T(n,x), which is illustrated in A001075 for the case m=3. In that case, the solutions are x=T(n,2), for integer n>0. For any m in this sequence, let E(k)=T(m+2mk,A002350(m)). Then E(k)-1 and E(k)+1 are consecutive odd powerful numbers for k=0,1,2,...

Crossrefs

Cf. A001075, A001091, A023038, A001081, A001085, A077424, A097310 (x solutions for m=3, 15, 35, 63, 99, 143, 195).