A118920 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that cross the x-axis k times (n>=1, k>=0).
2, 4, 2, 10, 8, 2, 28, 28, 12, 2, 84, 96, 54, 16, 2, 264, 330, 220, 88, 20, 2, 858, 1144, 858, 416, 130, 24, 2, 2860, 4004, 3276, 1820, 700, 180, 28, 2, 9724, 14144, 12376, 7616, 3400, 1088, 238, 32, 2, 33592, 50388, 46512, 31008, 15504, 5814, 1596, 304, 36, 2
Offset: 1
Examples
T(3,1)=8 because we have ud|dudu,ud|dduu,udud|du,uudd|du,du|udud,du|uudd, dudu|ud and dduu|ud (the crossings of the x-axis are shown by |). Triangle starts: 2; 4, 2; 10, 8, 2; 28,28,12, 2; 84,96,54,16,2;
Links
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Programs
-
Maple
T:=(n,k)->2*(k+1)*binomial(2*n,n-k-1)/n: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Mathematica
Table[2 (k + 1) Binomial[2 n, n - k - 1]/n, {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Feb 01 2016 *)
-
PARI
T(n,k) = 2*(k+1)*binomial(2*n,n-k-1)/n \\ Charles R Greathouse IV, Feb 01 2016
-
Sage
# Algorithm of L. Seidel (1877) # Prints the first n rows of the triangle. def A118920_triangle(n) : D = [0]*(n+2); D[1] = 2 b = True; h = 1 for i in range(2*n) : if b : for k in range(h, 0, -1) : D[k] += D[k-1] h += 1 else : for k in range(1, h, 1) : D[k] += D[k+1] b = not b if b : print([D[z] for z in (1..h-1)]) A118920_triangle(10) # Peter Luschny, Oct 19 2012
Formula
T(n,k) = 2*(k+1)*binomial(2*n,n-k-1)/n.
G.f.: G(t,z)=2*z*C^2/(1-t*z*C^2), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
More generally, the trivariate g.f. G=G(x,y,z), where x (y) marks number of downward (upward) crossings of the x-axis, is given by G = z*C^2*(2+(x+y)*z*C^2)/(1-x*y*z^2*C^4).
a(n) = 2 * A039598(n-1). - Georg Fischer, Oct 27 2021
Comments