A118936 Sub-Kaprekar numbers: k such that k = |q - r| and k^2 = q*10^m + r, for some m >= 1, q >= 0, 0 <= r < 10^m, with k not a power of 10.
11, 78, 101, 287, 364, 1001, 1078, 1096, 1287, 1364, 10001, 11096, 18183, 100001, 118183, 336634, 1000001, 1336634, 2727274, 10000001, 12727274, 19138757, 23529412, 25974026, 97744361, 100000001, 120879122, 123529412, 140017878
Offset: 1
Examples
287^2 = 82369 and |82 - 369| = 287, so 287 is a term. 1287^2 = 1656369 and |1656 - 369| = 1287, so 1287 is a term.
Programs
-
Mathematica
f[n_] := !IntegerQ@Log[10,n] && Block[{p = 10^Range@Log[10,n^2]}, 0 == Times@@(n-Abs[Floor[n^2/p]-Mod[n^2,p]])]; Select[Range@400000,f]
Comments