cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228381 Unabridged sub-Kaprekar numbers (A118936, but allowing powers of ten).

Original entry on oeis.org

10, 11, 78, 100, 101, 287, 364, 1000, 1001, 1078, 1096, 1287, 1364, 10000, 10001, 11096, 18183, 100000, 100001, 118183, 336634, 1000000, 1000001, 1336634, 2727274, 10000000, 10000001, 12727274, 19138757, 23529412, 25974026, 97744361, 100000000, 100000001, 120879122
Offset: 1

Views

Author

Hans Havermann, Aug 21 2013

Keywords

Comments

Square roots of A228103.
Excluding powers-of-ten and powers-of-ten-plus-one, what remains may be arranged into pairs (x,y), y>x, where y-x is a power of ten. The x terms correspond to A118938.

Examples

			10^2 = (10-0)^2.
11^2 = (12-1)^2.
78^2 = (6-084)^2.
		

Crossrefs

Programs

  • Mathematica
    k=3; While[k<10^8, k++; s=k^2; d=IntegerDigits[s]; l=Length[d]; Do[a=FromDigits[Take[d, {1, i}]]; b=FromDigits[Take[d, {i+1, l}]]; If[k==Abs[a-b], Print[k]], {i, l-1}]]
  • PARI
    lista(nn) = my(d, s, t=1, v=List([])); while(t(x>1&&x<=nn), v)); \\ Jinyuan Wang, Jan 02 2025

A118938 Sub-Kaprekar numbers (2): n such that n=r-q and n^2=q*10^m+r, for some m>=1, q>=0, 0<=r<10^m, with n not a power of 10.

Original entry on oeis.org

78, 287, 364, 1096, 18183, 336634, 2727274, 19138757, 23529412, 25974026, 97744361, 120879122, 140017878, 165991904, 237762239, 288553552, 307692308, 333666334, 405436669, 428571430, 440553516, 447710186, 454545455, 473684212
Offset: 1

Views

Author

Giovanni Resta, May 06 2006

Keywords

Examples

			287^2 = 82369 and 369-82 = 287.
A larger example is 1980198021^2 = 3921184202372316441, and 2372316441-392118420 = 1980198021.
		

Crossrefs

A228103 Numbers k whose base-10 digits can be split into two parts, q and r, with k = (q-r)^2.

Original entry on oeis.org

100, 121, 6084, 10000, 10201, 82369, 132496, 1000000, 1002001, 1162084, 1201216, 1656369, 1860496, 100000000, 100020001, 123121216, 330621489, 10000000000, 10000200001, 13967221489, 113322449956, 1000000000000, 1000002000001, 1786590449956, 7438023471076
Offset: 1

Views

Author

Hans Havermann, Aug 10 2013

Keywords

Comments

q*10^m+r = (q-r)^2 = A228381^2; q,m>0; 0<=r<10^m. - Hans Havermann, Aug 21 2013

Examples

			100 = (10-0)^2.
121 = (12-1)^2.
6084 = (6-084)^2.
		

Crossrefs

Programs

  • Mathematica
    k=3; While[k<10^8, k++; s=k^2; d=IntegerDigits[s]; l=Length[d]; Do[a=FromDigits[Take[d,{1,i}]]; b=FromDigits[Take[d,{i+1,l}]]; If[k==Abs[a-b], w=ToString[s]; Print[StringTake[w,{1,i}], "'", StringTake[w,{i+1,l}]]], {i,l-1}]] (* Hans Havermann, Aug 10 2013, Aug 20 2013 *)

A118937 Sub-Kaprekar numbers (1): n such that n=q-r and n^2=q*10^m+r, for some m>=1, q>=0, 0<=r<10^m, with n not a power of 10.

Original entry on oeis.org

11, 101, 1001, 1078, 1287, 1364, 10001, 11096, 100001, 118183, 1000001, 1336634, 10000001, 12727274, 100000001, 123529412, 1000000001, 1019138757, 1025974026, 1097744361, 1120879122, 1140017878, 1165991904, 1237762239, 1288553552
Offset: 1

Views

Author

Giovanni Resta, May 06 2006

Keywords

Examples

			1287^2 = 1656369 and 1656-369 = 1287.
A larger example: 1594563333^2 = 2542632222948068889 and
2542632222-948068889=1594563333.
		

Crossrefs

Showing 1-4 of 4 results.