cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228381 Unabridged sub-Kaprekar numbers (A118936, but allowing powers of ten).

Original entry on oeis.org

10, 11, 78, 100, 101, 287, 364, 1000, 1001, 1078, 1096, 1287, 1364, 10000, 10001, 11096, 18183, 100000, 100001, 118183, 336634, 1000000, 1000001, 1336634, 2727274, 10000000, 10000001, 12727274, 19138757, 23529412, 25974026, 97744361, 100000000, 100000001, 120879122
Offset: 1

Views

Author

Hans Havermann, Aug 21 2013

Keywords

Comments

Square roots of A228103.
Excluding powers-of-ten and powers-of-ten-plus-one, what remains may be arranged into pairs (x,y), y>x, where y-x is a power of ten. The x terms correspond to A118938.

Examples

			10^2 = (10-0)^2.
11^2 = (12-1)^2.
78^2 = (6-084)^2.
		

Crossrefs

Programs

  • Mathematica
    k=3; While[k<10^8, k++; s=k^2; d=IntegerDigits[s]; l=Length[d]; Do[a=FromDigits[Take[d, {1, i}]]; b=FromDigits[Take[d, {i+1, l}]]; If[k==Abs[a-b], Print[k]], {i, l-1}]]
  • PARI
    lista(nn) = my(d, s, t=1, v=List([])); while(t(x>1&&x<=nn), v)); \\ Jinyuan Wang, Jan 02 2025

A118936 Sub-Kaprekar numbers: k such that k = |q - r| and k^2 = q*10^m + r, for some m >= 1, q >= 0, 0 <= r < 10^m, with k not a power of 10.

Original entry on oeis.org

11, 78, 101, 287, 364, 1001, 1078, 1096, 1287, 1364, 10001, 11096, 18183, 100001, 118183, 336634, 1000001, 1336634, 2727274, 10000001, 12727274, 19138757, 23529412, 25974026, 97744361, 100000001, 120879122, 123529412, 140017878
Offset: 1

Views

Author

Giovanni Resta, May 06 2006; corrected May 12 2006

Keywords

Comments

Union of A118937 and A118938.

Examples

			287^2 = 82369 and |82 - 369| = 287, so 287 is a term.
1287^2 = 1656369 and |1656 - 369| = 1287, so 1287 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := !IntegerQ@Log[10,n] && Block[{p = 10^Range@Log[10,n^2]}, 0 == Times@@(n-Abs[Floor[n^2/p]-Mod[n^2,p]])]; Select[Range@400000,f]

A118937 Sub-Kaprekar numbers (1): n such that n=q-r and n^2=q*10^m+r, for some m>=1, q>=0, 0<=r<10^m, with n not a power of 10.

Original entry on oeis.org

11, 101, 1001, 1078, 1287, 1364, 10001, 11096, 100001, 118183, 1000001, 1336634, 10000001, 12727274, 100000001, 123529412, 1000000001, 1019138757, 1025974026, 1097744361, 1120879122, 1140017878, 1165991904, 1237762239, 1288553552
Offset: 1

Views

Author

Giovanni Resta, May 06 2006

Keywords

Examples

			1287^2 = 1656369 and 1656-369 = 1287.
A larger example: 1594563333^2 = 2542632222948068889 and
2542632222-948068889=1594563333.
		

Crossrefs

A259379 Numbers k of the form a - b + c, such that k^3 equals the decimal concatenation a//b//c and numbers k, b, and c have the same number of digits.

Original entry on oeis.org

155, 209, 274, 286, 287, 351, 364, 428, 573, 637, 715, 727, 846, 923, 1095, 1096, 2191, 8905, 18182, 18183, 81818, 81819, 326734, 336634, 663367, 673267, 2727273, 2727274, 4545454, 5454547, 7272727, 23529411, 23529412, 76470589
Offset: 1

Views

Author

Pieter Post, Jul 22 2015

Keywords

Comments

This sequence is infinite because it has several infinite subsequences. For example:
274, 326734, 332667334, 3..326..673..34 etc.;
364, 336634, 333666334, 3..36..63..34 etc.;
637, 663367, 666333667, 6..63..36..67 etc.;
727, 673267, 667332667, 6..673..326..67 etc.
Note that: 274 + 727 = 364 + 637 = 1001 and 326734 + 673267 = 336634 + 663367 = 1000001.
Many numbers come in pairs, like: (286, 287), (1095, 1096), (18182, 18183) but also bigger number (140017877, 140017878) and (859982123, 859982124).
140017877 + 859982124 = 140017878 + 859982123 = 1000000001.

Examples

			155^3 = 3723875 and 155 = 3 - 723 + 875.
715^3 = 365525875 and 715 = 365 - 525 + 875.
		

Crossrefs

Programs

  • PARI
    isok(n)=nb = #digits(n, 10); if (a = n^3 \ 10^(2*nb), c = n^3 % 10^nb; b = (n^3 - a*10^(2*nb))\10^nb; n^3 == (a-b+c)^3;); \\ Michel Marcus, Aug 05 2015
  • Python
    def modb(n,m):
        kk = 0
        l = 1
        while n > 0:
            na = n % m
            l += 1
            kk += ((-1)**l) * na
            n //= m
        return kk
    for n in range (100, 10**9):
        ll = len(str(n))
        if modb(n**3, 10**ll) == n:
            print(n, end=', ') # corrected by David Radcliffe, May 09 2025
    

A260193 Numbers k of the form abs(a - b + c - d) such that k^4 equals the concatenation of a//b//c//d and numbers k,b,c,d have the same number of digits.

Original entry on oeis.org

198, 220, 221, 287, 352, 364, 484, 562, 627, 638, 672, 715, 716, 780, 793, 858, 901, 1095, 1233, 2328, 8905, 18183, 39753, 60248, 85207, 336734, 2727274, 5893504, 8620777, 17769557, 52818678, 70710735, 76470590, 82230444, 101318734, 101636206, 104263158, 105262158, 109891110, 109942690, 117883117, 119722383, 120826541
Offset: 1

Views

Author

Pieter Post, Jul 22 2015

Keywords

Comments

Leading zeros in b, c, and d are allowed.
Many numbers come in pairs, like: (220, 221), (715, 716), (140017877, 140017878).
Some numbers are also member of A259379, for example: 287, 715, 1095 and also the pair (140017877, 140017878).

Examples

			198^4 = 1536953616 and 198 = abs (1 - 536 + 953 - 616 ).
8905^4 = 6288335365950625 and 8905 = abs (6288 - 3353 + 6595 - 0625 ).
		

Crossrefs

Programs

  • Mathematica
    test[n_] := Block[{L=IntegerLength@ n, v}, v = IntegerDigits[ n^4, 10^L]; Length@ v == 4 && Abs@ Total[ {1, -1, 1, -1} v] == n]; Select[Range[10^5], test] (* Giovanni Resta, Aug 12 2015 *)
  • Python
    def modb(n, m):
        kk = 0
        l = 1
        while n > 0:
            na = n % m
            l += 1
            kk += ((-1)**l) * na
            n //= m
        return abs(kk)
    for n in range (100, 10**9):
        ll = len(str(n))
        if modb(n**4, 10**ll) == n and n**4 >= 10**(ll*3):
             print (n, end=', ') # corrected by David Radcliffe, May 09 2025
Showing 1-5 of 5 results.