A333670 Numbers m such that m equals abs(d_1^k - d_2^k + d_3^k - d_4^k ...), where d_i is the decimal expansion of m and k is some power greater than 2.
0, 1, 48, 240, 407, 5920, 5921, 2918379, 7444416, 18125436, 210897052, 6303187514, 8948360198, 10462450356, 11647261846, 18107015789, 27434621679, 31332052290, 4986706842391, 485927682264092, 1287253463537089, 126835771455251081, 559018292730428520, 559018292730428521
Offset: 1
Examples
48 = abs(4^2 - 8^2), 5920 = abs(5^4 - 9^4 + 2^4 - 0^4).
Programs
-
Python
def moda(n,a): kk,j = 0,1 while n > 0: kk= kk-j*(n%10)**a n,j =int(n//10),-j return abs(kk) for i in range (0,10**7): for t in range(2,21): if i==moda(i,t): print (i) break
Extensions
a(19)-a(24) from Giovanni Resta, Apr 02 2020
Comments