cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309755 Primes with record Euclidean distance from the origin. When starting rightwards in a grid, turn left after a prime number, if not walk straight on.

Original entry on oeis.org

2, 3, 11, 29, 59, 97, 149, 151, 191, 193, 211, 223, 239, 263, 281, 307, 311, 331, 337, 593, 613, 631, 641, 653, 659, 853, 857, 877, 881, 907, 911, 967, 971, 991, 997, 1801, 1811, 1847, 1861, 1901, 1907, 2251, 2267, 2281, 2287, 2309, 2311, 2657, 2671, 2677, 3163, 3167, 3187, 3191, 3299, 3319, 3343, 3691, 3697, 3719, 3727
Offset: 1

Views

Author

Pieter Post, Aug 15 2019

Keywords

Comments

Cells can contain more than one number.
This sequence differs from A309701, where the Manhattan distance is taken.

Examples

			Grid of the first 34 steps. 0 (second cell in sixth row) represents (0,0).
---
xx  xx   xx   31   30    29
xx  xx   xx   32   xx    28
xx  xx   xx   33   xx    27
xx  xx   xx   34   xx    26
xx 5/17 4/16 3/15  14   13/25
x 0/6/18  1    2   xx   12/24
xx 7/19 8/20 9/21 10/22 11/23
---
2 (2,0) is two steps away from the origin, 3 (2,1) is at a distance of sqrt(5). Next record distance is 11 (4,-1), at distance sqrt(17). Next is 29 (4,5), at distance sqrt(41).
		

Crossrefs

Programs

  • Mathematica
    step[n_] := Switch[n, 0, {1, 0}, 1, {0, 1}, 2, {-1, 0}, 3, {0, -1}]; r = {0, 0}; q = 0; s={}; rm=0; Do[p = NextPrime[q]; r += step[Mod[n, 4]] * (p-q); r1 = Total @ (r^2); If[r1 > rm, rm = r1; AppendTo[s, p]]; q = p, {n, 0, 3000}]; s (* Amiram Eldar, Aug 15 2019 *)
  • PARI
    z=0; d=1; m=0; for (n=1, 3727, z+=d; if (isprime(n), d*=I; if (mRémy Sigrist, Aug 15 2019
  • Python
    def prime(z):
        isPrime=True
        for y in range(2,int(z**0.5)+1) :
            if z%y==0:
                isPrime=False
                break
        return isPrime
    m,n, g,h=[],[],[1,0,-1,0],[0,1,0,-1]
    z=10000
    for c in range (2,z):
        if prime(c)==True:
            m.append(c)
    ca,cb,cc=2,0,0
    for j in range(2,z):
        if j in m:
            cc=cc+1
            cd,ce=g[cc%4],h[cc%4]
        ca,cb=ca+cd,cb+ce
        n.append([j+1,ca,cb,((ca)**2+(cb)**2)**(0.5)])
        #print (j+1,ca,cb)
    v=2
    for j in n:
        if j[3]>v and j[0] in m:
            print (j)
            v=j[3]
    
Showing 1-1 of 1 results.