A260193 Numbers k of the form abs(a - b + c - d) such that k^4 equals the concatenation of a//b//c//d and numbers k,b,c,d have the same number of digits.
198, 220, 221, 287, 352, 364, 484, 562, 627, 638, 672, 715, 716, 780, 793, 858, 901, 1095, 1233, 2328, 8905, 18183, 39753, 60248, 85207, 336734, 2727274, 5893504, 8620777, 17769557, 52818678, 70710735, 76470590, 82230444, 101318734, 101636206, 104263158, 105262158, 109891110, 109942690, 117883117, 119722383, 120826541
Offset: 1
Examples
198^4 = 1536953616 and 198 = abs (1 - 536 + 953 - 616 ). 8905^4 = 6288335365950625 and 8905 = abs (6288 - 3353 + 6595 - 0625 ).
Links
- Pieter Post, Table of n, a(n) for n = 1..239
Programs
-
Mathematica
test[n_] := Block[{L=IntegerLength@ n, v}, v = IntegerDigits[ n^4, 10^L]; Length@ v == 4 && Abs@ Total[ {1, -1, 1, -1} v] == n]; Select[Range[10^5], test] (* Giovanni Resta, Aug 12 2015 *)
-
Python
def modb(n, m): kk = 0 l = 1 while n > 0: na = n % m l += 1 kk += ((-1)**l) * na n //= m return abs(kk) for n in range (100, 10**9): ll = len(str(n)) if modb(n**4, 10**ll) == n and n**4 >= 10**(ll*3): print (n, end=', ') # corrected by David Radcliffe, May 09 2025
Comments