cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118974 Sum of the lengths of the first descents in all hill-free Dyck paths of semilength n (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

0, 0, 2, 4, 11, 31, 94, 298, 977, 3283, 11243, 39087, 137569, 489171, 1754596, 6340756, 23063731, 84372061, 310216081, 1145748061, 4248861631, 15814069951, 59054807821, 221197379221, 830819449003, 3128511421663, 11808294045071, 44666151392095, 169294875129839
Offset: 0

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Examples

			a(4)=11 because in the hill-free Dyck paths of semilength 4, namely uu(dd)uudd, uu(d)uuddd, uu(d)ududd, uuu(dd)udd, uuu(d)uddd and uuuu(dddd), the sum of the lengths of the first descents (shown between parentheses) is 2+1+1+2+1+4=11.
		

Crossrefs

Programs

  • Maple
    F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=series(z^2*C*F*(1+C-z*C)/(1-z),z=0,32): seq(coeff(g,z,n),n=0..28);
  • Mathematica
    CoefficientList[Series[x^2*(1-Sqrt[1-4*x])/2/x*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1+(1-Sqrt[1-4*x])/2/x-x*(1-Sqrt[1-4*x])/2/x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^50)); concat([0,0], Vec(x^2*(1-sqrt(1-4*x))/2/x*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1+(1-sqrt(1-4*x))/2/x-x*(1-sqrt(1-4*x))/2/x)/(1-x))) \\ G. C. Greubel, Mar 18 2017

Formula

a(n) = Sum_{k=1,..,n} k*A118972(n,k).
G.f.: z^2*C*F*(1+C-z*C)/(1-z), where F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) and C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 17*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+1)*(17*n^2-65*n+60)*a(n) -3*(3*n-4)*(17*n^2-48*n+15)*a(n-1) +3*(17*n^3-82*n^2+121*n-60)*a(n-2) +2*(2*n-5) *(17*n^2-31*n+12) *a(n-3)=0. - R. J. Mathar, Jun 22 2016