A118980 Triangle read by rows: rows = inverse binomial transforms of columns of A309220.
1, 2, 1, 6, 5, 2, 14, 22, 18, 6, 34, 85, 118, 84, 24, 82, 311, 660, 780, 480, 120, 198, 1100, 3380, 5964, 6024, 3240, 720, 478, 3809, 16380, 40740, 60480, 52920, 25200, 5040, 1154, 13005, 76518, 258804, 531864, 676080, 519840, 221760, 40320, 2786, 43978, 348462, 1564314, 4286880, 7444800, 8240400
Offset: 1
Examples
First few rows of the triangle: 1; 2, 1; 6, 5, 2; 14, 22, 18, 6; 34, 85, 118, 84, 24; 82, 311, 660, 780, 480, 120; ... Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2).
Crossrefs
Programs
-
Maple
with(transforms); M := 12; T := [1]; S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): for n from 1 to M do R2 := expand(coeff(S, x, n)); R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)]; f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): s1 := [seq(f(i),i=1..3*n)]; s2 := BINOMIALi(s1); s3 := [seq(s2[i],i=1..n+1)]; T := [op(T), op(s3)]; od: T; # N. J. A. Sloane, Aug 12 2019
Extensions
Edited and extended by N. J. A. Sloane, Aug 12 2019, guided by the comments of R. J. Mathar from Oct 30 2011
Comments