cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A119012 Number of valleys strictly above the x-axis in all hill-free Dyck paths of semilength n (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

0, 0, 1, 5, 23, 98, 405, 1644, 6604, 26356, 104746, 415155, 1642493, 6490622, 25629581, 101156936, 399151400, 1574818496, 6213255614, 24515233082, 96739530062, 381803092580, 1507141137026, 5950525214360, 23498966702808
Offset: 1

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Examples

			a(4)=5 because in the 6 (=A000957(5)) hill-free Dyck paths of semilength 4, namely UUUUDDDD, UUUD|UDDD, UUD|UUDDD, UUD|UD|UDD, UUUDD|UDD and UUDDUUDD (U=(1,1), D=(1,-1)) we have altogether 5 valleys strictly above the x-axis (indicated by |).
		

Crossrefs

Cf. A119011.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0,0] cat Coefficients(R!( 2*(1-3*x-(1-x)*Sqrt(1-4*x))/((1+2*x+ Sqrt(1-4*x))^2 *Sqrt(1-4*x)) )); // G. C. Greubel, Apr 06 2019
    
  • Maple
    G:=2*(1-3*z-(1-z)*sqrt(1-4*z))/(1+2*z+sqrt(1-4*z))^2/sqrt(1-4*z): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=1..30);
  • Mathematica
    Rest[CoefficientList[Series[2*(1-3*x-(1-x)*Sqrt[1-4*x])/(1+2*x+ Sqrt[1-4*x])^2/Sqrt[1-4*x], {x, 0, 30}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(2*(1-3*x-(1-x)*sqrt(1-4*x)) /( (1+2*x+sqrt(1-4*x))^2*sqrt(1-4*x)))) \\ G. C. Greubel, Mar 19 2017
    
  • Sage
    a=(2*(1-3*x-(1-x)*sqrt(1-4*x)) /( (1+2*x+sqrt(1-4*x))^2* sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Apr 06 2019

Formula

a(n) = Sum_{k=0,..,n-2} k*A119011(n,k).
G.f.: 2*(1-3*z-(1-z)*sqrt(1-4*z))/((1+2*z+sqrt(1-4*z))^2*sqrt(1-4*z)).
a(n) ~ 2^(2*n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n-3)*(3*n-2)*(n+2)*a(n) +(-21*n^3+50*n^2-13*n-4)*a(n-1) -2*(n-1) *(2*n-1)*(3*n+1)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
Showing 1-1 of 1 results.