cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A004601 Expansion of Pi in base 2 (or, binary expansion of Pi).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Keywords

Examples

			11.0010010000111111011010101000100010000...
		

References

  • J. P. Delahaye, Le Fascinant Nombre Pi, "100000 digits of pi in base two", pp. 209-210; Pour la Science, Paris 1997.

Crossrefs

Pi in base b: this sequence (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).

Programs

  • Maple
    convert(evalf(Pi), binary, 120);  # Alois P. Heinz, Dec 16 2018
  • Mathematica
    RealDigits[Pi, 2, 75][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 2], {n, 1, 100}] (* Joan Ludevid, Jun 24 2022;easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
  • PARI
    binary(Pi) \\ Altug Alkan, Apr 08 2018

A119377 Numbers k such that the next k binary digits of Pi are odd primes with no leading zeros.

Original entry on oeis.org

2787, 6, 7, 23, 2, 3, 3, 8, 2, 2, 2, 5, 8, 2, 18, 9, 10, 413, 8, 3, 2, 4019, 14, 4, 2, 2, 11, 21, 4, 2, 3, 6, 2, 11, 3, 5, 19, 2, 6, 2, 4, 32, 2, 56, 31, 6, 7, 7, 2, 32, 20, 9, 10, 900, 2, 2, 2, 97, 5, 2, 8, 64, 3, 13, 3, 2, 6, 7, 15, 3, 2666, 7, 8, 3, 14, 3, 2, 2, 6, 5, 92, 17, 31, 4, 241, 78, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2006

Keywords

Comments

Partition the string of binary digits of Pi in such a way that each partition begins and ends with 1 (thus no leading or trailing zeros) and each such partition is prime.
Pi_2 = 1100100100001111110110101010001000100001011010001100001000..._2 (A004601).
If 2 is allowed as a member, then the sequence begins: 2787,2,5,6,2,2,2,39,5,8,2,18,9,10,2,153,2,6,2,18,7,7,12,2,2,2,2,....

Examples

			a(1) represents the binary number 1100100100...(2767 terms)...0100000011 which equals the decimal number 7339860347...(819 terms)...8308318467 which is a prime.
a(2) represents the binary number 101001 which equals the decimal number 41, a prime.
		

Crossrefs

Programs

  • Mathematica
    ps = First@ RealDigits[Pi, 2, 12010]; lst = {}; Do[k = 1; While[fd = FromDigits[ Take[ps, k], 2]; EvenQ@fd || ps[[k + 1]] == 0 || !PrimeQ@fd, k++ ]; AppendTo[lst, k]; ps = Drop[ps, k], {n, 87}]; lst
Showing 1-2 of 2 results.