cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119020 Eigenvector of triangle A055151 of Motzkin polynomial coefficients, where A055151(n,k) = n!/((n-2k)!*k!*(k+1)!) for 0<=k<=[n/2], n>=0.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 96, 302, 1023, 3607, 13318, 50348, 195361, 772565, 3112630, 12715692, 52648847, 220705119, 937145214, 4028239116, 17522172021, 77071709841, 342583183572, 1537550150766, 6961838925069, 31774593686661
Offset: 0

Views

Author

Paul D. Hanna, May 09 2006

Keywords

Comments

Binomial transform is A119021. Inverse binomial transform is A119022.

Examples

			A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 96*x^6 +...
A(x/(1+x))/(1+x) = 1 + x^2 + 2*2*x^4 + 4*5*x^6 + 11*14*x^8 +...+ a(n)*A000108(n)*x^(2n) +...
		

Crossrefs

Cf. A055151 (Motzkin polynomials), A119021 (binomial), A119022 (inverse binomial).

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,n!/((n-2*k)!*k!*(k+1)!)*a(k)))}

Formula

Eigenvector: a(n) = Sum_{k=0..[n/2]} n!/((n-2k)!*k!*(k+1)!)*a(k), for n>=0, with a(0)=1.
G.f. satisfies: A(x) = A(-x/(1-2*x))/(1-2*x); i.e., 2nd inverse binomial transform equals A(-x).
G.f. satisfies: A(x/(1-x))/(1-x) = A(-x/(1-3*x))/(1-3*x).
G.f. of inverse binomial transform: A(x/(1+x))/(1+x) = B(x^2) where [x^n] B(x) = a(n)*C(2*n,n)/(n+1) = a(n)*A000108(n) and A000108=Catalan.