A119241 Number of powerful numbers (A001694) between consecutive squares n^2 and (n+1)^2.
0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 3, 0, 0, 2, 0, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 2, 0
Offset: 1
Keywords
Examples
a(5) = 2 because the two powerful numbers 27 and 32 are between 25 and 36.
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- P. Shiu, On the number of square-full integers between successive squares, Mathematika, Vol. 27, No. 2 (1980), pp. 171-178.
Programs
-
Mathematica
Powerful[n_] := (n==1) || Min[Transpose[FactorInteger[n]][[2]]]>1; Table[Length[Select[Range[k^2+1, k^2+2k], Powerful[ # ]&]], {k,130}]
-
Python
from math import isqrt from sympy import integer_nthroot, factorint def A119241(n): def f(x): return int(sum(isqrt(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) return f((n+1)**2-1)-f(n**2) # Chai Wah Wu, Sep 10 2024
Formula
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3/2)/zeta(3) - 1 = A090699 - 1 = 1.173254... - Amiram Eldar, Oct 24 2020
Comments