A119242 Least number k such that there are exactly n powerful numbers between k^2 and (k+1)^2.
1, 2, 5, 31, 234, 1822, 3611, 17329, 1511067, 524827, 180469424, 472532614, 78102676912
Offset: 0
Examples
a(3) = 31 because 968, 972 and 1000 are between 961 and 1024.
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.
Links
- Donovan Johnson, Powerful numbers between k^2 and (k+1)^2
- Steve Pettigrew, Sur la distribution de nombres speciaux consecutifs, M.Sc. Thesis, Univ. Laval, 2000.
- P. Shiu, On the number of square-full integers between successive squares, Mathematika, Vol. 27, No. 2 (1980), pp. 171-178.
Programs
-
Mathematica
nMax=10^12; lst={}; Do[lst=Join[lst, i^3 Range[Sqrt[nMax/i^3]]^2], {i,nMax^(1/3)}]; lst=Union[lst]; n=0; k=1; Do[n0=k; While[lst[[k]]
Extensions
a(8) and the previously known a(9) from Giovanni Resta, May 11 2006
a(10)-a(11) from Donovan Johnson, Dec 07 2008
a(12) from Donovan Johnson, Sep 01 2013
Comments