A119327 Expansion of (1-4x+12x^2-16x^3+8x^4)/(1-x)^5.
1, 1, 7, 19, 38, 66, 106, 162, 239, 343, 481, 661, 892, 1184, 1548, 1996, 2541, 3197, 3979, 4903, 5986, 7246, 8702, 10374, 12283, 14451, 16901, 19657, 22744, 26188, 30016, 34256, 38937, 44089, 49743, 55931, 62686, 70042, 78034, 86698, 96071
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Fifth column of A119326.
Programs
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{1,1,7,19,38},41] (* James C. McMahon, Sep 15 2024 *)
-
PARI
N=66; x='x+O('x^N); Vec((1-4*x+12*x^2-16*x^3+8*x^4)/(1-x)^5) \\ Seiichi Manyama, Mar 11 2019
Formula
a(n) = Sum{j=0..n} C(4,2j)*C(n,2j).