A119358 Number of n-element subsets of [2n] having an even sum.
1, 1, 2, 10, 38, 126, 452, 1716, 6470, 24310, 92252, 352716, 1352540, 5200300, 20056584, 77558760, 300546630, 1166803110, 4537543340, 17672631900, 68923356788, 269128937220, 1052049129144, 4116715363800, 16123803193628, 63205303218876, 247959261273752
Offset: 0
Examples
a(3) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. - _Alois P. Heinz_, Feb 04 2017
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2, ((4*n-10)*(5*n^2-10*n+4)*(a(n-1)+4*(n-2)*a(n-3) /(n-1))/(5*n^2-20*n+19)-4*(n-1)*a(n-2))/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Aug 26 2018
-
Mathematica
Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
Formula
G.f.: (1/sqrt(1-4x)+1/sqrt(1+4x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)^2.
a(n) = C(2n,n)/2+sin(Pi*(n+1)/2)*C(n,n/2)/2.
a(n) = A119326(2n,n).
D-finite with recurrence n*(n-1)*(10*n-29)*a(n) +2*(n-1)*(5*n^2-74*n+164)*a(n-1) +4*(-40*n^3+310*n^2 -744*n+559)*a(n-2) +8*(n-2)*(5*n^2-74*n+164)*a(n-3) -16*(25*n-42)*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 05 2012
a(n) = hypergeom([(1-n)/2, (1-n)/2, -n/2, -n/2], [1/2, 1/2, 1], 1). - Vladimir Reshetnikov, Oct 04 2016
a(n) = A282011(2n,n). - Alois P. Heinz, Feb 04 2017
Extensions
New name from Alois P. Heinz, Feb 04 2017
Comments