cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119358 Number of n-element subsets of [2n] having an even sum.

Original entry on oeis.org

1, 1, 2, 10, 38, 126, 452, 1716, 6470, 24310, 92252, 352716, 1352540, 5200300, 20056584, 77558760, 300546630, 1166803110, 4537543340, 17672631900, 68923356788, 269128937220, 1052049129144, 4116715363800, 16123803193628, 63205303218876, 247959261273752
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

Old name was: Central coefficients of number triangle A119326.

Examples

			a(3) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. - _Alois P. Heinz_, Feb 04 2017
		

Crossrefs

Column k=2 of A318557.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2,
         ((4*n-10)*(5*n^2-10*n+4)*(a(n-1)+4*(n-2)*a(n-3)
          /(n-1))/(5*n^2-20*n+19)-4*(n-1)*a(n-2))/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 26 2018
  • Mathematica
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)

Formula

G.f.: (1/sqrt(1-4x)+1/sqrt(1+4x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)^2.
a(n) = C(2n,n)/2+sin(Pi*(n+1)/2)*C(n,n/2)/2.
a(n) = A119326(2n,n).
a(n) = A071688(n) + A119359(n) for n>=1.
D-finite with recurrence n*(n-1)*(10*n-29)*a(n) +2*(n-1)*(5*n^2-74*n+164)*a(n-1) +4*(-40*n^3+310*n^2 -744*n+559)*a(n-2) +8*(n-2)*(5*n^2-74*n+164)*a(n-3) -16*(25*n-42)*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 05 2012
a(n) = hypergeom([(1-n)/2, (1-n)/2, -n/2, -n/2], [1/2, 1/2, 1], 1). - Vladimir Reshetnikov, Oct 04 2016
a(n) = A282011(2n,n). - Alois P. Heinz, Feb 04 2017

Extensions

New name from Alois P. Heinz, Feb 04 2017