cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119365 Generalized Catalan numbers for triangle A119335.

Original entry on oeis.org

1, 0, 0, 1, 6, 20, 51, 126, 392, 1513, 5877, 21054, 71270, 242463, 863590, 3193737, 11889414, 43783908, 159998493, 586908936, 2175907284, 8138471667, 30541703733, 114620380032, 430344635913, 1619584557885, 6116422089050
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

Counts rooted planar n-trees whose number of leaves is divisible by 3.

Crossrefs

Programs

  • Maple
    A119365 := proc(n)
        local k;
        if n = 0 then
            return 1
        end if;
        a := 0 ;
        for k from 0 to n do
            if modp(n-k,3) = 0 then
                a := a+binomial(n,k)*binomial(n,k+1) ;
            end if;
        end do:
        a/n;
    end proc:
    seq(A119365(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
  • Mathematica
    A119335[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
    a[n_] := A119335[2n, n] - A119335[2n, n+1];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Sep 14 2023 *)

Formula

a(n) = A119335(2n,n) - A119335(2n,n+1).
a(n) = Sum_{k=0..n} if(mod(n-k,3)=0, (1/n)*C(n,k)*C(n,k+1), 0).
a(n) + A119366(n) + A119367(n) = A000108(n).