A119442 Triangle read by rows: row n lists number of unordered partitions of n into k parts which are partition numbers (members of A000041).
1, 2, 1, 3, 2, 1, 5, 7, 2, 1, 7, 11, 7, 2, 1, 11, 26, 19, 7, 2, 1, 15, 40, 38, 19, 7, 2, 1, 22, 83, 78, 54, 19, 7, 2, 1, 30, 120, 168, 102, 54, 19, 7, 2, 1, 42, 223, 301, 244, 134, 54, 19, 7, 2, 1, 56, 320, 557, 471, 292, 134, 54, 19, 7, 2, 1, 77, 566, 1035, 1000, 623, 356, 134, 54
Offset: 0
Examples
Triangle begins: 1 2 1 3 2 1 5 7 2 1 7 11 7 2 1 11 26 19 7 2 1 15 40 38 19 7 2 1 22 83 78 54 19 7 2 1 30 120 168 102 54 19 7 2 1 42 223 301 244 134 54 19 7 2 1 56 320 557 471 292 134 54 19 7 2 1 The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018
Crossrefs
Programs
-
Mathematica
nn=12; ser=Product[1/(1-PartitionsP[n]x^n y),{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n},{y,0,k}],{n,nn},{k,n}] (* Gus Wiseman, Mar 23 2018 *)
Formula
G.f.: 1/Product_{k>0} (1-y*A000041(k)*x^k). - Vladeta Jovovic, May 21 2006
Extensions
More terms and better definition from Vladeta Jovovic, May 21 2006
Comments