A119446 Triangle as described in A100461, except with t(1,n) = prime(n).
2, 2, 3, 3, 4, 5, 3, 4, 6, 7, 3, 4, 6, 8, 11, 3, 4, 6, 8, 10, 13, 3, 4, 6, 8, 10, 12, 17, 3, 4, 6, 8, 10, 12, 14, 19, 3, 4, 6, 8, 10, 12, 14, 16, 23, 7, 8, 9, 12, 15, 18, 21, 24, 27, 29, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 31, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 33, 37
Offset: 1
Examples
Triangle begins as: 2; 2, 3; 3, 4, 5; 3, 4, 6, 7; 3, 4, 6, 8, 11; 3, 4, 6, 8, 10, 13; 3, 4, 6, 8, 10, 12, 17; 3, 4, 6, 8, 10, 12, 14, 19; 3, 4, 6, 8, 10, 12, 14, 16, 23; 7, 8, 9, 12, 15, 18, 21, 24, 27, 29;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function t(n,k) // t = A119444 if k eq 1 then return NthPrime(n); else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); end if; end function; [t(n,n-n+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 07 2023
-
Mathematica
t[n_, k_]:= t[n, k]= If[k==1, Prime[n], (n-k+1)*Floor[(t[n,k-1] -1)/(n -k+1)]]; Table[t[n, n-k+1], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 07 2023 *)
-
SageMath
def t(n, k): if (k==1): return nth_prime(n) else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) flatten([[t(n, n-k+1) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Apr 07 2023
Formula
Form an array t(m,n) (n >= 1, 1 <= m <= n) by: t(1,n) = prime(n) for all n; t(m+1,n) = (n-m)*floor( (t(m,n) - 1)/(n-m) ) for 1 <= m <= n-1.