cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A092325 a(n) = min{ m : sum_{n <= i <= m} 1/p_i > 1}, where p_i is the i-th prime = A000040(i).

Original entry on oeis.org

3, 10, 29, 69, 148, 258, 430, 658, 985, 1401, 1876, 2490, 3181, 3994, 4992, 6152, 7436, 8846, 10495, 12298, 14315, 16634, 19146, 21929, 24928, 28081, 31520, 35347, 39514, 44131, 49146, 54134, 59500, 65176, 71349, 77684, 84540, 91757, 99341, 107404, 115863, 124728, 134223, 143944, 154316, 165265, 176936, 188764, 200743
Offset: 1

Views

Author

Michael Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Apr 02 2004

Keywords

Examples

			a(2) = 10 as 1/3+1/5+1/7+1/11+1/13+1/17+1/19+1/23+1/29 > 1
but 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 < 1 (29 is the 10th prime).
		

Crossrefs

Cf. A119494.

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{k = n, p = Prime[n], s = 1/Prime[n]}, While[s < 1, p = NextPrim[p]; s = N[s + 1/p, 64]; k++ ]; k]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Apr 07 2004 *)
    s = 0; j = 1; t1 = Table[While[s <= 1, s = s + 1/Prime[j]; j++]; s = s - 1/Prime[i]; j - 1, {i, 25}]  (* Horst H. Manninger, Oct 11 2021 *)

Formula

a(n) = A000720(A119494(n)) - Amiram Eldar, Dec 24 2018.

Extensions

More terms from Robert G. Wilson v, Apr 07 2004
More terms from Fintan Costello, Jun 03 2011
Showing 1-1 of 1 results.