cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Fintan Costello

Fintan Costello's wiki page.

Fintan Costello has authored 2 sequences.

A186929 Number of squarefree composite integers greater than or equal to n whose proper divisors are all less than n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 2, 5, 5, 5, 4, 8, 8, 13, 12, 12, 12, 18, 18, 25, 25, 25, 24, 32, 32, 32, 31, 31, 31, 40, 39, 49, 49, 49, 48, 49, 49, 60, 59, 59, 59, 71, 70, 83, 83, 83, 82, 96, 96, 96, 96, 96, 96, 111, 111, 112, 112, 112, 111, 127, 127, 144, 143, 143, 143, 144, 143, 161, 161, 161, 160
Offset: 1

Author

Fintan Costello, Mar 01 2011

Keywords

Examples

			For n=6 the only squarefree composite integers greater than or equal to 6 all of whose proper divisors are all less than 6 are 6, 10 and 15.  Since there are 3 such integers, a(6)=3.
		

Crossrefs

Cf. A182843.

Programs

  • Mathematica
    Join[{0}, Table[Length[Select[Range[n, n^2], SquareFreeQ[#] && ! PrimeQ[#] && Divisors[#][[-2]] < n &]], {n, 2, 100}]] (* T. D. Noe, Mar 01 2011 *)

Formula

a(n+1) = a(n)+b(n)(c(n)+d(n)), where b(n) is 1 if n is squarefree, 0 otherwise (sequence A008966), c(n) is 1 if n is composite, 0 otherwise (sequence A066247), and d(n) is the number of primes less than the minimum prime factor of n. Since d(2n)=0 for all n we see that a(2n+1)=a(2n)+b(2n)c(2n). Taking f(n) to represent sequence A038802 we have a(2n)=a(2n-1)+b(2n-1)(c(2n-1)+f(n-1)).

Extensions

more

A182843 Number of composite integers greater than or equal to n whose proper divisors are all less than n.

Original entry on oeis.org

0, 0, 1, 3, 3, 6, 6, 10, 10, 11, 11, 16, 16, 22, 22, 23, 23, 30, 30, 38, 38, 39, 39, 48, 48, 50, 50, 51, 51, 61, 61, 72, 72, 73, 73, 75, 75, 87, 87, 88, 88, 101, 101, 115, 115, 116, 116, 131, 131, 134, 134, 135, 135, 151, 151, 153, 153, 154, 154, 171, 171, 189, 189, 190, 190, 192, 192, 211, 211
Offset: 1

Author

Fintan Costello, Feb 28 2011

Keywords

Examples

			Example: For n=4 the only composite integers greater than or equal to 4 all of whose proper divisors are all less than 4 are 4,6, and 9.  Since there are 3 such integers, a(4)=3.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Length[Select[Range[n, n^2], ! PrimeQ[#] && Divisors[#][[-2]] < n &]], {n, 2, 100}]] (* T. D. Noe, Feb 28 2011 *)

Formula

a(n+1) = a(n)+b(n)+c(n), where b(n) is 1 if n is prime, 0 otherwise (sequence A010051) and c(n) is the number of primes less than the minimum prime factor of n. Since b(2n)=c(2n)=0 for all n>1 we see that a(2n+1)=a(2n) for all n>1. Taking d(n) to represent sequence A038802 we have a(2n)=a(2n-1)+c(2n-1)+d(n-1).