A119517 The first 10 digits of the cube root of n contain the digits 0-9.
2017, 3053, 9950, 15139, 15533, 18357, 24214, 24424, 31457, 32654, 39605, 46705, 47776, 57692, 60448, 65839, 65854, 66999, 67405, 68512, 70239, 73985, 74283, 74493, 77913, 79600, 82431, 83311, 84467, 91571, 95557
Offset: 1
Examples
n=9950. n^(1/3) = 21.50837964..., so 9950 is the third entry.
Crossrefs
Cf. A113507.
Programs
-
Mathematica
Select[Range[100000],Sort[RealDigits[Surd[#,3],10,10][[1]]]==Range[0,9]&] (* Harvey P. Dale, Jan 22 2013 *)
-
PARI
\\ The first 10 digits of i-th root of x contain all of the digits 0-9. rootdigits(n,i) = { local(f,x,y,a,d,s); for(x=2,n, f=[0,0,0,0,0,0,0,0,0,0]; s=0; y=(x^(1/i))*10^9; a=Vec(Str(y)); for(d=1,10, k=eval(a[d]); if(k==0,k=10); f[k]=1; ); for(j=1,10,s+=f[j]); if(s==10,print1(x",")); ) }
Comments