A119519 The first 10 digits of the fourth root of n contain the digits 0-9.
6654, 14311, 14422, 14505, 24364, 25646, 33421, 35833, 36759, 36870, 37112, 37628, 41108, 42606, 45886, 46453, 46729, 47183, 49698, 50064, 56023, 66932, 69520, 70236, 70367, 71443, 71898, 73005, 73676, 74488, 74972, 75464, 78872, 82066
Offset: 1
Examples
n=6654. n(1/4) = 9.031724865..., so 6654 is the first entry.
Crossrefs
Cf. A113507.
Programs
-
Mathematica
okQ[n_]:=With[{ptrn=Table[1,{10}]},Module[{rd10=RealDigits[Power[n, (4)^-1],10,10][[1]]},DigitCount[FromDigits[rd10]]==ptrn]]; Select[Range[90000],okQ] (* Harvey P. Dale, Jan 21 2011 *)
-
PARI
\\ The first 10 digits of i-th root of x contain all of the digits 0-9. rootdigits(n,i) = { local(f,x,y,a,d,s); for(x=2,n, f=[0,0,0,0,0,0,0,0,0,0]; s=0; y=(x^(1/i))*10^9; a=Vec(Str(y)); for(d=1,10, k=eval(a[d]); if(k==0,k=10); f[k]=1; ); for(j=1,10,s+=f[j]); if(s==10,print1(x",")); ) }