cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119519 The first 10 digits of the fourth root of n contain the digits 0-9.

Original entry on oeis.org

6654, 14311, 14422, 14505, 24364, 25646, 33421, 35833, 36759, 36870, 37112, 37628, 41108, 42606, 45886, 46453, 46729, 47183, 49698, 50064, 56023, 66932, 69520, 70236, 70367, 71443, 71898, 73005, 73676, 74488, 74972, 75464, 78872, 82066
Offset: 1

Views

Author

Cino Hilliard, May 27 2006

Keywords

Examples

			n=6654. n(1/4) = 9.031724865..., so 6654 is the first entry.
		

Crossrefs

Cf. A113507.

Programs

  • Mathematica
    okQ[n_]:=With[{ptrn=Table[1,{10}]},Module[{rd10=RealDigits[Power[n, (4)^-1],10,10][[1]]},DigitCount[FromDigits[rd10]]==ptrn]]; Select[Range[90000],okQ]  (* Harvey P. Dale, Jan 21 2011 *)
  • PARI
    \\ The first 10 digits of i-th root of x contain all of the digits 0-9. rootdigits(n,i) = { local(f,x,y,a,d,s); for(x=2,n, f=[0,0,0,0,0,0,0,0,0,0]; s=0; y=(x^(1/i))*10^9; a=Vec(Str(y)); for(d=1,10, k=eval(a[d]); if(k==0,k=10); f[k]=1; ); for(j=1,10,s+=f[j]); if(s==10,print1(x",")); ) }