A119522 Determinant of n X n matrix of first n^2 nonzero terms of triangular numbers.
1, -8, -27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(3) = -27 = |.1..3..6| |10.15.21| |28.36.45|. a(4) = 0 because of the singular matrix 0 = |.1...3...6..10| |15..21..28..36| |45..55..66..78| |91.105.120.136|.
Programs
-
Mathematica
nmax = 100; Table[Det[Table[(k*(i-1) + j)*(k*(i-1) + j + 1)/2, {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Feb 24 2019 *)
Formula
a(n) = determinant of n X n matrix of first n^2 nonzero terms of A000217(k) for k>0. a(n) = determinant of n X n matrix of k*(k+1)/2 for k from 1 through n^2.
Extensions
More terms from Vaclav Kotesovec, Feb 24 2019