A119586 Triangle where T(n,m) = (n+1-m)-th positive integer with (m+1) divisors.
2, 3, 4, 5, 9, 6, 7, 25, 8, 16, 11, 49, 10, 81, 12, 13, 121, 14, 625, 18, 64, 17, 169, 15, 2401, 20, 729, 24, 19, 289, 21, 14641, 28, 15625, 30, 36, 23, 361, 22, 28561, 32, 117649, 40, 100, 48, 29, 529, 26, 83521, 44, 1771561, 42, 196, 80, 1024, 31, 841, 27
Offset: 1
Examples
Looking at the 4th row, 7 is the 4th positive integer with 2 divisors, 25 is the 3rd positive integer with 3 divisors, 8 is the 2nd positive integer with 4 divisors and 16 is the first positive integer with 5 divisors. So the 4th row is (7,25,8,16). The triangle T(n,m) begins: n\m: 1 2 3 4 5 6 7 --------------------------------------------- 1 : 2 2 : 3 4 3 : 5 9 6 4 : 7 25 8 16 5 : 11 49 10 81 12 6 : 13 121 14 625 18 64 7 : 17 169 15 2401 20 729 24 ... Square array A(n,m) begins: n\m: 1 2 3 4 5 ... -------------------------------------------- 1 : 2 4 6 16 12 ... 2 : 3 9 8 81 18 ... 3 : 5 25 10 625 20 ... 4 : 7 49 14 2401 28 ... 5 : 11 121 15 14641 32 ... ...
Crossrefs
Programs
-
Mathematica
t[n_, m_] := Block[{c = 0, k = 1}, While[c < n + 1 - m, k++; If[DivisorSigma[0, k] == m + 1, c++ ]]; k]; Table[ t[n, m], {n, 11}, {m, n}] // Flatten (* Robert G. Wilson v, Jun 07 2006 *)
Extensions
More terms from Robert G. Wilson v, Jun 07 2006
Comments