A119621 Wolstenholme numbers A007406 ( numerator of Sum 1/k^2, k = 1..(p-1)/2 ) divided by prime p>3.
1, 7, 479, 413, 63397, 514639, 10410343, 1411432849, 6620481151, 6454614084953, 421950627598601, 8222379104323, 3989306589962303, 443539778381788333, 148124338024667050948691, 143366612154851808752629
Offset: 3
Examples
A007406(n) begins 1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141,.. a(3) = A007406( (5-1)/2 ) / 5 = 1 a(4) = A007406( (7-1)/2 ) / 7 = 49 / 7 = 7 a(5) = A007406( (11-1)/2 ) / 11 = 5269 / 11 = 479
Crossrefs
Cf. A007406.
Programs
-
Mathematica
Table[Numerator[Sum[1/i^2,{i,1,(Prime[n]-1)/2}]]/Prime[n],{n,3,25}]
Formula
a(n) = numerator[ Sum[ 1/i^2, {i,1,(Prime[n]-1)/2} ] ] / Prime[n] for n > 3.
Comments