cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119646 a(n) = maximum number of partitions of n into 3 parts, each having the same product.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3
Offset: 3

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu) and Robert G. Wilson v, Jul 27 2006

Keywords

Examples

			a(3)=1, because there is only one way to partition 3.
a(13)=2, because 13 = 6+6+1 = 9+2+2 and 6*6*1 = 9*2*2 = 36.
a(39)=3, because 39 = 20+15+4 = 24+10+5 = 25+8+6 and 20*15*4 = 24*10*5 = 25*8*6 = 1200.
See A103277 for more examples.
		

Crossrefs

Programs

  • Mathematica
    pdt[lst_] := lst[[1]]*lst[[2]]*lst[[3]];
    tanya[n_] := Max[Length /@ Split[Sort[pdt /@ Union[ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers,(* failsafe *) Round[n^2/12]]], 3]] ]]];
    Table[ tanya@n, {n, 4, 108}]
    Table[SortBy[Tally[Times@@@IntegerPartitions[n,{3}]],Last][[-1,2]],{n,3,110}] (* Harvey P. Dale, Jan 08 2023 *)

Extensions

Name clarified by Dmitry Kamenetsky, Aug 02 2015