A119646 a(n) = maximum number of partitions of n into 3 parts, each having the same product.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3
Offset: 3
Keywords
Examples
a(3)=1, because there is only one way to partition 3. a(13)=2, because 13 = 6+6+1 = 9+2+2 and 6*6*1 = 9*2*2 = 36. a(39)=3, because 39 = 20+15+4 = 24+10+5 = 25+8+6 and 20*15*4 = 24*10*5 = 25*8*6 = 1200. See A103277 for more examples.
Programs
-
Mathematica
pdt[lst_] := lst[[1]]*lst[[2]]*lst[[3]]; tanya[n_] := Max[Length /@ Split[Sort[pdt /@ Union[ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers,(* failsafe *) Round[n^2/12]]], 3]] ]]]; Table[ tanya@n, {n, 4, 108}] Table[SortBy[Tally[Times@@@IntegerPartitions[n,{3}]],Last][[-1,2]],{n,3,110}] (* Harvey P. Dale, Jan 08 2023 *)
Extensions
Name clarified by Dmitry Kamenetsky, Aug 02 2015