cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119680 Prime numbers obtained by inserting a 0 between each pair of adjacent digits of a prime number > 10.

Original entry on oeis.org

101, 103, 107, 109, 307, 401, 503, 509, 601, 607, 701, 709, 809, 907, 10007, 10009, 10103, 10301, 10501, 10607, 10709, 10903, 10909, 20101, 20507, 20707, 20903, 30103, 30307, 30509, 30703, 30803, 30809, 40009, 40507, 40709, 50707, 50909, 60103, 60107, 60509
Offset: 1

Views

Author

Roger L. Bagula, Jun 11 2006

Keywords

Comments

From Rémy Sigrist, Oct 08 2017: (Start)
See A159236 for the original prime numbers.
The least prime numbers > 10 remaining prime during exactly k iterations of the operation of inserting a 0 between each pair of adjacent digits are, for small values of k:
k prime
- -----
0 23
1 11
2 19
3 17
4 220333
5 8677267
(End)

Examples

			The first four terms arise from 11 -> 101, 13 -> 103, 17 -> 107, 19 -> 109.
23 -> 203 is not prime, so 203 is not a term.
		

Crossrefs

Cf. A159236.

Programs

  • Mathematica
    a = Table[Table[Mod[Floor[Prime[m]/10^n], 10], {n, 4, 0, -1}], {m, 5, 200}]; Dimensions[a] b = Table[Sum[(If[Mod[n - 1, 2] == 0, a[[m, 1 + Floor[(n - 1)/2]]], 0])*10^(9 - n), {n, 1, 9}], {m, 1, 195}]; c = Flatten[Table[If[PrimeQ[b[[m]]], b[[m]], {}], {m, 1, 195}]]
  • PARI
    forprime (p=10, 599, if (isprime(pp=fromdigits(digits(p), 100)), print1 (pp ", "))) \\ Rémy Sigrist, Oct 08 2017
    
  • Python
    from itertools import count, islice
    from sympy import isprime, nextprime
    def ok(n):
        return n > 10 and isprime(n) and isprime(int("0".join(list(str(n)))))
    def agen():
        p = 11
        while True:
            t = int("0".join(list(str(p))))
            if isprime(t): yield t
            p = nextprime(p)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Jul 11 2022

Extensions

Name edited by Rémy Sigrist, Oct 08 2017
a(39)-a(41) from Michael S. Branicky, Jul 11 2022