A119684 Ternary emirpimes.
112, 211, 1021, 1102, 1201, 2011, 2022, 2202, 10111, 11101, 11112, 12102, 12202, 12212, 20121, 20212, 20221, 21111, 21202, 21221, 100102, 100201, 101011, 101122, 101221, 102001, 102002, 102012, 102022, 102122, 102222, 110101, 110102, 110122, 110211, 111102, 111202, 112011, 112121, 112122, 112202
Offset: 1
Examples
a(1) = 112 because 112 (base 3) = 14 (base 10) is semiprime and R(112) = 211, where 211 (base 3) = 22 (base 10) is a different semiprime. a(13) = 12202 because 12202 (base 3) = 155 (base 10) is semiprime and R(12202) = 20221, where 20221 (base 3) = 187 (base 10) is a different semiprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein, Jonathan Vos Post, et al., Emirpimes.
- Eric Weisstein, Vincenzo Origlio, et al., Ternary.
Programs
-
Maple
R:= NULL: count:= 0: for m from 2 while count < 100 do for j from 1 to 2 while count < 100 do n:= 3*m+j; if numtheory:-bigomega(n) <> 2 then next fi; L:= convert(n,base,3); r:= add(L[-i]*3^(i-1),i=1..nops(L)); if r <> n and numtheory:-bigomega(r) = 2 then count:= count+1; R:= R, add(L[i]*10^(i-1),i=1..nops(L)) fi od od: R; # Robert Israel, Jun 07 2020
-
Mathematica
(* First run the program for A105999 *) SemiPrimeQ[n_Integer] := TrueQ[SemiPrimePi[n] > SemiPrimePi[n - 1]]; BaseForm[Select[Table[SemiPrime[n], {n, 100}], GCD[#, 3] == 1 && # != FromDigits[Reverse[IntegerDigits[#, 3]], 3] && SemiPrimeQ[FromDigits[Reverse[IntegerDigits[#, 3]], 3]] &], 3] (* From Alonso del Arte, Dec 22 2010 *)
Formula
Extensions
More terms from Robert Israel, Jun 07 2020
Comments