A119687 f-Pascal's triangle where f(n) = n^2 = A000290(n).
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 26, 50, 26, 1, 1, 677, 3176, 3176, 677, 1, 1, 458330, 10545305, 20173952, 10545305, 458330, 1, 1, 210066388901, 111413523931925, 518191796841329, 518191796841329, 111413523931925, 210066388901, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins as follows: 1; 1, 1; 1, 2, 1; 1, 5, 5, 1; 1, 26, 50, 26, 1; 1, 677, 3176, 3176, 677, 1; 1, 458330, 10545305, 20173952, 10545305, 458330, 1; ...
Links
- Cortney Reagle, Table of n, a(n) for n = 0..104 (Rows n = 0..12 of the triangle, flattened)
Programs
-
PARI
T(n)={my(M=matrix(n,n)); M[1,1]=1; for(n=2, n, M[n,1]=1; for(k=2, n, M[n,k]=M[n-1,k-1]^2 + M[n-1,k]^2)); M} { my(A=T(7)); for(i=1, #A, print(A[i,1..i])) } \\ Andrew Howroyd, Sep 17 2019
Formula
T(n, k) = T(n-1, k-1)^2 + T(n-1, k)^2; T(0,0) = 1; T(n,-1) = 0; T(n, k) = 0, n < k.
Extensions
a(12) = 50 inserted and more terms added by Cortney Reagle, Sep 17 2019
Comments